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ABSTRACT 

An N-Injector in an arbitrary finite group G is defined as a maximal nilpotent 
subgroup of G, containing a subgroup A of G of maximal order satisfying 
class(A) =< 2. Among other results the N-Injectors of Sym(n) are determined 
and shown to consist of a unique conjugacy class of subgroups of Sym(n). 

A. Introduction 

N-Injectors in a finite group G are maximal nilpotent subgroups which share 

many properties with the Sylow subgroups. The theory of Injectors, and in 

particular N-Injectors has been developed mostly for solvable groups. The aim 

of this paper is to develop the theory of N-Injectors for arbitrary finite groups, 

and to determine the N-Injectors of Sym(n). 

N-Injectors were first defined in [9] as follows: a subgroup A of G is an 

N-Injector, if for each H <~<J G, A N H is a maximal nilpotent subgroup of H. 

In [13] it has been proved that if C(F(G)) C F(G), then G contains N-Injectors, 

they form a conjugacy class, and they can be characterized as the maximal 

nilpotent subgroups which contain F(G). The following two observations (a) and 

(b) show that neither the definition of N-Injectors in [9], nor their characteriza- 

tion in [13] determine in general a unique conjugacy class of maximal nilpotent 

subgroups in G. 

(a) The maximal nilpotent subgroups of Sym(5) are: S2(Sym(5)), Ss(Sym(5)) 

and C(S3(Sym(5)). They intersect Alt(5) in S2(AIt(5)), Ss(AIt(5)) and S3(AIt(5)), 

respectively. The intersections are maximal nilpotent subgroups of Alt(5), and 

since Alt(5) and Sym(5) are the only non-trivial subnormal subgroups of Sym(5), 

it follows that each maximal nilpotent subgroup of Sym(5) is an N-Injector by 

the definition in [9]. 
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(b) As F(Sym(5))= 1, each maximal nilpotent subgroup of Sym(5) is an 

N-Injector by the characterization in [13] as well. 

Therefore, we will use another characterization of N-Injectors. First a 
definition. 

DEFINITION 1. (i) d(k,G) will denote the maximum of the orders of all 

nilpotent subgroups of G of class at most k. 

(ii) M(k, G) will denote the set of all nilpotent subgroups of G of class at most 

k, having order d(k, G). 
(iii) M(oo, G) (d(oo, G)) will denote the set (order) of nilpotent subgroups of 

maximal order. 

A theorem of Bender proved in [2] states: if C(F(G)) C_ F(G),  then A is an 

N-Injector ilI A is a maximal nilpotent subgroup of G containing an element of 

M(2, G). Now it will be convenient to adopt the following definition of 

N-Injectors. 

DEFINITION 2. A subgroup A of G is called an N-Injector if A is a maximal 

nilpotent subgroup containing an element of M(2, G). The set of N-Injectors of 

G will be denoted by NI(G).  

Our definition assures that any group G contains N-Injectors. If C(F(G))C_ 
F(G), then by [2] and [13] our definition is equivalent to the original definition in 

[9]. 

Section B contains calculations which lead to the evaluation of d(2, Sym(n)), 

and as a consequence, Theorem B.8, NI(Sym(n)) is determined and shown to 
consist of a single conjugacy class. 

THEOREM B.8. (a) Sym(n) contains a single class of N-Injectors. 
(b) If n # 3 (mod 4), then each N-Injector is a 2-Sylow subgroup of Sym(n). 

If n = 3 (mod 4), then each N-Injector is the subgroup generated by a 3-cycle 
and a 2-Sylow subgroup of Sym(n - 3) on the remaining n - 3 symbols, and each 
such subgroup belongs to NI(Sym(n)). 

In Section C, we have obtained results about NI(Sym(n)) and the sets 

M(k, Sym(n)) similar to known results in groups of odd order, [1], [5]. The main 

result is that NI(Sym(n))= M(oo, Sym(n)). 

In Section D, we introduce a generalization of N-Injectors, namely 1r-N- 

Injectors. First a definition. 

DEFINITION 3. Let zr be a set of primes. 
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(i) d(Tr, k, G) will denote the maximum of orders of all nilpotent 7r-subgroups 
of G of class at most k. 

(ii) M(7r, k, G) will denote the set of all nilpotent 7r-subgroups of G of class at 
most k having order d(Tr, k, G). 

(iii) M(7r, o0, G) (d(7r,~,G)) will denote the set (order) of nilpotent 7r- 

subgroups of maximal order. 

DEFINITION 4. A subgroup A of G is called a 7r-N-Injector if A is a 
maximal nilpotent 7r-subgroup containing an element of M(Tr, 2, G). The set of 
7r-N-Injectors of G will be denoted by NI(Tr, G). 

REMARKS. (a) If 7r is the set of all primes, then: 
(i) M(Tr, k, G) = M(k, G). 
(ii) M(Tr,% G) = M(oo, G). 

(iii) NI(Tr, G) = NI(G).  
(b) If 7r consists of a single prime, then: 
M(Tr, o% G), NI(Tr, G) and the set of p-Sylow subgroups of G, coincide. 
(c) If G is solvable and {H x I x E G} is the set of 7r-Hall subgroups of G then: 
(i) M(Tr, k , G ) =  I,.Jxe6M(Tr, k, HX). 

(ii) M(Tr,~,G)-- [..J,~M(Tr,~,H'). 

(iii) Nt(Tr, G )  = Ux~oNI(HX). 
We suggest the following two conjectures. 

CONJECTURE 1. Let G be a finite group and 7r a set of primes, then NI(7r, G) is 

a conjugacy class. 

CONJECTURE 2. Let G be a finite group and 7r a set of primes, then M(7r, o% G) 
is a conjugacy class. 

REMARKS. (d) Conjecture 1 holds in solvable groups. 
(e) Conjecture 2 holds in groups of odd order, since then M(Tr, oo, G ) =  

NI(Tr, G) [1], [5]. 
(f) If 7r = {p}, Conjectures 1 and 2 hold by the Sylow theorem. 
(g) In. general, NI(G) and ~t(~, G) don't coincide. Examples of groups of 

order p"q ~ where it happens can be deduced from [7]. Another example is the 
Mathieu group M. .  By [11] M(oo, M , )  consists of the 2-Sylow subgroups of M~t, 
while NI (M, )  consists of the 11-Sylow subgroups of MI~. 

The main result of Section D is that for G = Sym(n), Conjectures 1 and 2 

hold. 
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B. The N-Injectors of Sym(n) 

NI(Sym(n)) will be determined in three steps. 

I. Evaluation of d(2, Sp(Sym(n))). 

II. Evaluation of d(2, M), where M is any maximal nilpotent subgroup of 

Sym(n). 

III. Finding the maximal nilpotent subgroups of Sym(n) which maximize 

d(2, M), and showing that they constitute a unique conjugacy class. Thus, the 

N-Injectors are all conjugate. 

Step L Evaluation of d(2, S~(Sym(n))) 

Since Sp(Sym(np + r)) = Sp(Sym(np)) for 0 < r < p, it is enough to consider 

Sp(Sym(np)). We will deal with p odd and p = 2 separately. 

If p is an odd prime, consider the arithmetic progression {kp2+p + l [ k  = 

1 , 2 , . . . } .  By the Dirichlet Theorem, we can find a prime q = kp2+p + 1 for 

some k. Clearly, p I q - 1, but p2 X q - 1. For such q the groups Sp(Sym(np)) 
[14, p. 11] and Sp(GL(n,q)) [16] are isomorphic (as abstract groups, not as 

permutation groups). Thus, d(2, Sp(Sym(np)))will be evaluated as a conse- 

quence of Lemma B.1 on p-subgroups of GL(n,q) .  

If p = 2, then the group Z2 ]~ S2(Sym(n))~ S2(Sym(2n)) can be represented 

faithfully as a linear group, acting on a vector space V over GF(3) of dimension 

n, in the following way. Let V =  V ~ V 2 G . . . V ,  be the direct sum of n 

l-dimensional subspaces. Let Z2 act on each V~, and let S2(Sym(n)) permute the 

subspaces V~, l < - i =  < n. We note that this embedding of S2(Sym(2n)) in 

S.,(GL(n,3)) is not onto [6]. But still, d l2, S2(Sym(2n))) will be evaluated as a 

consequence of Lemma B.2 on 2-subgroups of GL(n, 3). The final result of Step I 

will be summarized in Theorem B.3. Results of the nature of Lemma B.1 and 

Lemma B.2 appear in [10]. 

LEMMA B. 1. Let p be an odd prime and P a p-subgroup of GL(n, q) of class at 
most p - 1 .  If p [ q - 1  but p2 X q - 1 ,  then !P I<--P". 

PROOF. By induction on n. First we will check the lemma for n -< p. Since 

Jp" if n<p 
!S.(GL(n,q))[ [ p"+' if n = p 

it suffices to consider the case n = p. However,  class (Sp(GL(p, q ) ) ) = p ,  hence 

I P] <= pP. Assume, therefore, that n > p and let P act on V, a vector space of 

dimension n. By induction, the theorem holds for any p-group of class at most 
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p - 1 which acts faithfully on V', where dim(V') < n. If V is reducible under P, 

say V = V I ~  V2, let P~ = P/Ce(V~) and r V~l=q ~ i = 1,2. We obtain: 

!p!<_te, ltp2!<_p"..p"~-=p",~",-=p ''. 

So, we may assume that V is irreducible. As P C S,(GL(n, q ) ) ~  St, (Sym(np)), 

therefore, if P is cyclic, then t P! < f~,,g,,~,r,~l =< p,,  and we are through. It is left to 

consider the case where P is non-cyclic. By [14, 19.2] P has a subgroup H of 

index p such that we can write V as a direct sum, V = V~ 0 V2 0 "  �9 " V,, where 

each V~ is an H-invariant subspace, and if x E P I H, then Ex  = V,, where the 

permutation i ~ i' is a p-cycle. 

Let K~ = C,(V~), 1 =< i = p  and take x E P \ H .  Here,  by induction we have 

!H/K~I <=P"/P, hence I H!  =<p". If !H!  < p " ,  we obtain IP! =<P", so we may 

assume IHI = p". That means H ~ If" ~ (H/K~), so H is the direct product of its 

projections on V,, these projections being conjugate through x. Letting y be an 

element of order  p that H induces on V~, it follows that P contains ( y , x ) ~  

Cp ~ Cp, of class p, which contradicts the assumption class (P)_-< p -  1, and 

Lemma B.1 is proved. 

LEMMA B.2. I f  P is a 2-subgroup of GL(n, 3) of class at most two, then 

By induction on n. First, we will check the lemma for n =<3. We PROOF. 

have: 

( 2  

i f n = l ,  
if n =2 ,  
if n = 3 .  

Following [6] S2(GL(2, 3)) is Semidihedral of class 3 and S2(GL(3, 3)) is the direct 

product of $2(GL(2,3)) and Z_,, again a group of class 3, hence if P is of class at 

most two, then t 2' if n = 2, and I P I -_  < 2" if n = 3. This completes the 

checking. Assume, therefore, that n > 3 and let P act on V, a vector space of 

dimension n. By induction, the lemma holds for any 2-subgroup of class at most 

two which acts faithfully on V', where d im(V ' )<  n. If V is reducible under P, 

say V =  V,@V~_, let P, =P/Cp(V~) and IV, I=3 ",, i = 1,2. We obtain: 

! P t ---- l P, ! I P2t ~ 2",+t~ 2,_,.[,2m = 2" +t,,/2j~ c,,/21 =< 2" +[~ 

So we may assume that V is irreducible. Since class (P) =< 2, it follows that if P is 

Quaternion, Dihedral or Semidihedral, then [PI = 23 < 2"+l"m for n > 3 as 

required. 
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If P is cyclic, let In/2] = Y.;=~ 2 ~ be the 2-adic representation of [n/2]. Then 

S2(GL(n,3)) is II~=~ Gi for n even and (I-ILIG,)• for n odd, where G~ = 

T ~ S2(Sym(2 a,)) and T denotes the Semidihedral group of order 24. Since T has 

a faithful permutation representation of degree 23, it follows that G~ has such a 

representation of degree 23. 2 ~,. Thus S2(GL(n,3)) has a faithful permutation 

representation of degree less than or equal to 23(3~=~2",)+2 = 23[n/2] +2.  It 

follows that ]PI =< 23[n/2] + 2 =< 2 "+t"/21 for n > 3, as required. 

It is left to consider the case where P is not cyclic Quaternion, Semidihedral, 

or Dihedral. Now the proof can be continued as in Lemma B.1. By [14, 19.2] P 

has a subgroup H of index 2 such that V = VI ~) V2 where V, i = 1, 2 are 

H-invariant subspaces of V and each x E P \ H  permutes V~ and V2. Let 

K~ = C,(V,) ,  it can be assumed that H = K I x K 2  and P - ~ K ~ ] C 2 .  Here 

class(P) =< 2 implies that K~ is abelian. But K~ is irreducible on V2 (otherwise P is 

reducible), so K~ is cyclic, and now class(P)=< 2 is possible only for I K, I = 2, 

I PI = 8, and the lemma certainly holds for this case. Lemma B.2 is proved. 

THEOREM B.3. I f  m = n p  + r, where 0 <= r < p, then : 

Sp(Sym(m))) = d(2, Sp(Sym(np)))  = ! 

p" 

d(2, 

t 2.+1./21 

if p is odd, 

i f p  =2.  

PROOF. In view of our discussion preceding Lemma B.1, it follows from 
Lemmas B.1 and B.2 that: 

p" if p is odd, 
d(2, Sp (Sym(np))) 

L 2 "+["/21 if p = 2. 

In fact, the equality holds. If p is odd, then the group generated by n disjoint 

p-cycles is elementary abelian of order p". If p = 2, divide 2n into [n/2] sets of 4 

elements each (in the case where n is odd there is a remainder of a two element 

set). Since the Dihedral group of order 8 has class two and acts faithfully on a set 

of 4 elements, we can construc~ a direct product of [n/2] such groups, adding a 

transposition to the product if n is odd. In any case, a group of order 2 "§ is 

obtained. 

COROLLARY B.4. 

f pp.-I d(2, Sp (Sym(p"))) = 2 
23.2" -2 

if p is odd, 

if p = 2  and n = 1, 

if  p = 2 and n > l.  
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Step II. Evaluation of d (2, M)  

First, we will describe the structure of the maximal nilpotent subgroups of 

Sym(n), [15, 1.5]. Let n = Ef=~ n, be a partition of n into k positive integers and 

assume it satisfies: 

(i) The integer 1 occurs in the partition at most once. 

(ii) The integer p" (p is a prime) occurs in the partition at most p - 1 times. 

Then, to each such partition, there corresponds a unique conjugacy class of 

maximal nilpotent subgroups. Let Sym(n) act on f l = { 1 , 2 , . - . ,  n}. Take any 

partition {fL [ 1 =< i -< k } of 1) such that I1), I = n, for 1 =< i =< k. Each subgroup in 
the class i sa  direct product of k transitive nilpotent subgroups G~ of degree n~, 

acting on lq~, 1 < i =< k. Each G~ is isomorphic to a direct product of p-Sylow 

subgroups of Sym(p") [12, p. 379], where p~ is the highest power of p dividing n, 

and p runs over the primes which divide n~. 

REMARKS. (a) The structure of the subgroups of Sym(n) maximal with 

respect to being nilpotent and transitive, can be deduced from the above 

description. These are the subgroups which correspond to the trivial partition 

n = n~ and they form a conjugacy class. 

(b) To each partition of n there corresponds a nilpotent subgroup as 

described above, but conditions (i) and (ii) imply its maximality. 

NOTATION. Though the n~'s in a partition of n need not be distinct, we will 

use the set notation {n~,... ,  n,} in order to denote partitions. 

THEOREM B.5. I f  M is a maximal  nilpotent subgroup of Sym(n) which 

corresponds to the partition { n~, . . ., nr }, then d(2, M)  = II~=~ ~2(n~), where 

2 
~02(m) = 232~ -~ 

p p ~  l 

I 

I-I q~z(p 7') 
i=1 

if m =1,  
i [ m  =2 ,  

i [ m = 2  ~, a=>2, 
i [ m = p ~ ,  p ~ 2 ,  a > 0 ,  

1 

ifm --lip?, 
i ~ l  

where p~ are distinct primes [or 1 <= i <= I. 

PROOF. By the discussion above M = II7~1 M ,  where each M~ is a nilpotent 

subgroup of M of degree n~. By Corollary B.4, d(2, M)=> 1-I7=1 ~p2(n~) and since 

every subgroup of M of class at most two is contained in a product of its 

projections on the M~'s, we obtain an equality. 
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LEMMA B.6. If p ~ > 3, where p is an odd prime and p" = 2 ~ + �9 �9 .2 ~ is the 

2-adic representation of p~, then" [IT~ q~2(2") > r  

PROOF. The  l emma  can be easily checked up to p" <= 17, so assume p" > 17. 

If pC, = 3 (rood 4), then II7=, q~2(2") 2 " * ~2 . . . . . .  = 11,<2 ' and i f p  = 1  (mod 4), then 
' ' 2 ' - ' "  e II~= t ~,2(2'" ) = 2 -~ Hi =, So in any case we get in view of p"  > 17 and p => 3: 

r I 2 ~2''' =2 -q ' 2~ - ,  ,-' . . . .  2~" ~ > 2  -~'" > p '  .... = ~2(p~). 
i = l  i = l  

LEMMA B.7. Let {n,, .  �9 n,} be a partition of n which maximizes the product 

Fl;=j ~2(n~). Then either all the ni's are powers of 2, or n, = 3 and all the other ni's 

(if r > 1) are powers of 2. 

PROOF. If one  of the n~'s equals  p"t, where p is an odd pr ime,  p" > 3 and 

(t ,p) = 1, then replacing n, by the set {2~,t I 1 <= i <-_ s}, where  p" = 2", + . - .  + 2 ~, 

yields in view of L e m m a  B.6: 

I~I q~ff2'~,t)_- > I~I (q~ff2,,,)q~fft)) = (q~2(t))' I~I q~2(2" ) 
i = 1  i = I  i = I  

fI _-> q~2(t) r  q)2(t)~p2(p") = tp2(tp") = ~2(ni)  
i = l  

contradic t ing the maximat i ty  of  I1;=~ ~#2(n~). Hence  each n, is of  the fo rm 3" �9 28, 

where  0 ~  oe _-< 1 a n d / 3  =>0. If a = 1 and /3 > 0  then replacing 3 . 2  ~ by 28 and 

2 ~+' again yields a contradic t ion since q~ff3.2~)<q~ff2~)q~,(2~+'). So a = 1  

implies /3 = 0 .  We conclude that each n~ is e i ther  3 or  2 ~, /3 =>0. Since 

r = 9 < 16 = s02(4)q~ff2), n, = 3 can occur  at most  once and the l emma  is 

proved.  

THEOREM B.8. (a) Sym(n )  contains a single class of N-Injectors. 

(b) If n ~ 3 (mod 4), then each N-Injector is a 2-Sylow subgroup of Sym(n) .  

If n = 3 (rood 4), then each N-Injector is the subgroup generated by a 3-cycle 

and a 2-Sylow subgroup of Sym(n  - 3) on the remaining n - 3 symbols, and each 

such subgroup belongs to N I ( S y m ( n ) ) .  

PROOF. Let  M be an N - I n j e c t o r  of Sym(n )  cor responding  to a part i t ion 

{n~, . . . ,  n,}. By L e m m a  B.7, the n, 's  are powers  of 2 and possibly one  of t hem is 

3. Since M is a maximal  n i lpotent  subgroup  of Sym(n) ,  condi t ions (i) and (ii) 

imply that  all the n~'s are distinct. Hence ,  e i ther  the n, 's  are the te rms  in the 

2-adic represen ta t ion  of n, or  3 occurs and the o the r  n, 's  are the te rms  in the 

2-adic r epresen ta t ion  of n - 3 ,  whichever  yields a larger d(2, M) .  T h r o u g h o u t  
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the proofs of Lemmas B.6 and B.7 strict inequalities were involved hence for 

each n a unique partition corresponds to an N-Injector  of Sym(n). Thus by [15], 

NI(Sym(n))  consists of a unique conjugacy class and (a) follows. A simple 

checking determines the n~'s in the two cases where n ~ 3 (mod 4) and where 

n = 3 (mod 4). Applying [14, p. 11] (b) follows. 

REMARK. The 2-Sylow subgroups of Sym(n) are the only self-normalizing 

nilpotent subgroups, namely the Carter subgroups of Sym(n) [3]. By Theorem 

B.8, the Carter subgroups and the N-Injectors of Sym(n) coincide for n ~  3 

(rood 4) and are similar, but different, for n = 3 (mod 4). 

C. Further properties of NI(Sym(n))  

We will investigate the sets .ff(k, Sym(n)), where k is a positive integer or 

equals ~, and obtain results similar to known results for groups of odd order [1], 

[5]. The problem of evaluation of d(1, Sym(n)) was solved by Bercov and Moser 

[4], who reduced it to an arithmetical problem: find a partition {n , , . . . ,  n,} of n 

which maximizes the product I1~=~ n~. Then they used [8] and obtained the 

following formula: 

3 k if n = 3k, 

d(1, S y m ( n ) ) =  4 . 3  k 1 i f n = 3 k + l ,  

2 . 3  k if n = 3 k + 2 .  

In Section B, we have already evaluated d(2, Sym(n)). Now we will prove: 

THEOREM C.1. Let k denote oc or a positive integer different from 1 or 3 and let 

A E .~l(k, Sym(n)). 

(a) If  n g 3 (mod 4), then A is a 2-subgroup. 

If n = 3 (mod 4), then A is generated by a 3-cycle and a 2-subgroup on the 

remaining n -  3 symbols. 

(b) ~ ( ~ ,  Sym(n)) = NI(Sym(n)).  

(c) There is a B ~ ~r Sym(n)) such that B D_ A, and any maximal nilpotent 

subgroup of Sym(n) which contains A belongs to ~r Sym(n)). 

PROOF. We first prove (a). The case k = 2 has already been proved, so 

assume k => 4 or k = ~. For each prime power p'~, define 

~ok (p~) = d(k, Sp (Sym(p"))) 

and if m = II7=~ p~' where p, are distinct primes, let ~,k (m) = IIT=j ~'k (p~") = 

d(k, IIT=z Sp,(Sym(pT'))). If A E ~ ( k ,  Sym(n)), then A C M where M is a maxi- 
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mal nilpotent subgroup of Sym(n). Thus, d(k, Sym(n))= max{d(k, M ) ! M  is a 

maximal nilpotent subgroup of Sym(n)} and let the maximum value be obtained 

on M, which corresponds to the partition { n l , ' " ,  n,}. Clearly [12, p. 379] 

q~k (p,, ) <<_ q~=(p,~) = p(p~- l ) / (p- l ) ,  q~k (1) = 1, q~k (2) = 2, q~k (4) = 8 and if a => 3, then 

~k (2 ~' ) :> q~4(2 ~' ) :> 27"2~-~, since S2(Sym 23) is of order 27 and of class 4 [12, p. 379]. 

We claim now that an analogue of Lemma B.6 holds: if p~ > 3, where p is an 

odd prime and p " =  2", + - - .  +2", is the 2-adic representation of p~, then: 

IIi=l~0k(2~')>q~k(p ") for k _->4. It is easy to check the claim for p~ =<31, so 

assume, since p" is a power of an odd prime, that p" => 37. Using our estimates it 

suffices to prove: 

2-~ I-I 27"2~-3 > P (p~-I)/(p-I) o r  27p"-~> p (p~-1)t(p-1). 
i = l  

Since p ~ > 37, hence 7 ~ _-~ > 13 ,, = ap up and the problem reduces to proving 

2,~ >p~p~-w~p-l) or -i-~p > log2p. 

But 
13 13 p ~ - I  
1---6 p~ = i'6 (p - 1) - - ~  > ~ log2 p p - 1  

since ~(p - 1 ) >  logzp for p _-3. The claim has been proved. Now applying the 

arguments of the proofs of Lemma B.7 and Theorem B.8, we deduce that M is 

either S2(Sym(n)) or a subgroup generated by a 3-cycle and S2(Sym(n-3)) .  

Thus, d(k, Sym(n)) = max{3d(k, S2(Sym(n - 3))), d(k, Sz(Sym(n)))}. Let n = 

4m +e ,  where e =0 ,1 ,2 ,3 .  Then for e = 0 , 1 , 2  we get: 

3d(k, S2(Sym(n - 3))) =< 3 .2d(k ,  S2(Sym(n - 4 - e))) 

< 6 d(k, S2(Sym(n - e))) < d(k, S2(Sym(n))) 
= 8  

and if e = 3, then 

d (k, Sz(Sym(n))) _--- 2d (k, S2(Sym(4m))) < 3d (k, Sz(Sym(4m))). 

These inequalities complete the proof of (a). Parts (b) and (c) follow directly 

from the proof of part (a). 

The problem of sC(3,(Sym(n)) will be dealt with elsewhere. The following 

example shows that the case k = 3 (as well as the case k = 1) is exceptional. 

EXAMPLE. S3(Sym(9)) is of order 3" and class 3, while S2(Sym(9)) is of order 27 

and class 4, [12, p. 379] and it is easy to see that sr Sym(9)) is the set of 3-Sylow 

subgroups of Sym(9). 
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D. ~r-N-Injectors in Sym(n) 

~'-N-Injectors have been defined in Section A. We will now prove that 
"onjectures 1 and 2 of Section A hold in Sym(n). 

THEOREM D.1. Let 1r be any set of primes, then NI(~r, Sym(n)) is a conjugacy 
lass. 

PROOF. If 2, 3 E ~', then NI(1r, Sym(n)) = mI(Sym(n)) and hence is a conjug- 

cy class. If 2 ~ Ir but 3 ~ 7r, then using the same arguments as in the proof of 

"heorem B.8 it follows that NI(~', Sym(n)) is the set of the 2-Sylow subgroups of 

,ym(n) and, hence again, is a conjugacy class. So let us assume that 2 E ~'. We 

All prove that any element of NI(~-, Sym(n)) has the following form: it is the 

r-Hall subgroup of a maximal nilpotent subgroup of Sym(n) which corresponds 

o a uniquely defined partition {m, n l , ' " ,  n,} of n satisfying the following 
onditions: 

(a) m <min{p [p E ~r} or m =0 .  

(b) For each i, 1 < i =< s, ni = p~" where p, E ,r not necessarily distinct and 

r,=>l. 

Since each subgroup in the set M(zr, 2, Sym(n)) is contained in a maximal 

dlpotent subgroup M, 

d(zr, 2, Sym(n)) = max{d (Tr, 2, M )  I M  is maximal nilpotent in Sym(n)}. 

~et { m l , "  ", m,} be a partition of n which corresponds to an MI such that 

t(,r, 2, M~) = d(Tr, 2, Sym(n)). Then define m = X m,, where the summation runs 

~ver those i 's for which d(~-, 2, Sym(rn,)) = 1. Clearly m < min{p I P E 7r}. Let M 

~e a maximal nilpotent subgroup of Sym(n) corresponding to the partition 

m, n l , . . . ,  n,} where the n,'s are those m~'s which satisfy d(Tr,2, Sym(m~)) > 1. 

3bviously d(rr, 2, M )  = d(rr, 2, M 0  = d(Tr, 2, Sym(n)). It follows from the maxi- 

nality of d(zr,2, M)  that only primes from 7r divide each n,  1 =< i =< s. We will 

low prove that n~ = p~' where p~ ~ ,r and a~ => 1. Suppose that ni = p~q~, where 

~,q E ,r and W.L.O.G. p >q .  By splitting n~ into q~ parts of cardinality p" 

�9 .ach, we get a contribution of pP~ instead of pP~ thus increasing 

t(rr, 2, Sym(n)). So n~ cannot be a product of powers of two distinct primes, and 

Jsing induction, we obtain n, = pT'. 

It is left to prove that d(m 2, Sym(n)) determines the n, 's uniquely. Denote  by 

~v(p) the sum of all the n~'s which are powers of the prime p, and let 

w(p) = X'k~ akp "~, 1 < ak =< p -  1, a~ => 1 be the p-adic representation of w(p). 

By the maximality of M each p~, appears exactly ak times as an n~ for some i. 

~ince 2 ~ , r ,  Theorem B.3 implies that the exponent of p in d(rr, 2, M)  is 
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Y'k-~ akp ~k ~ and hence the ak's and the ak's are uniquely determined by 

d(Tr, 2, M). We conclude that all the n~'s are uniquely determined and hence the 

elements of NI(~', Sym(n)) form a single conjugacy class. 

THEOREM D.2. Let 7r be any set of primes, then the set ,~(Tr, 0% Sym(n)) is a 

conjugacy class. 

PROOF. The proof is quite similar to the proof of Theorem D.1. We will 

prove that if H E ~r then it is a 7r-Hall subgroup of a maximal 

nilpotent subgroup of Sym(n) which corresponds to a uniquely defined partition 

{m, n l , ' "  ", ns} of n satisfying the following conditions: 

(a) m < min{p I P E rr} or m =0.  

(b) For each i, 1 _<- i =< s, n~ = pT' where p~ E r r  not necessarily distinct and 

Ofi 2 1 .  

Define { m l , "  ", m,}, {m, h i , "  ", n~} and M similarly to their definitions in the 

proof of Theorem D.1. We will now prove that n~ = p'/' for some p, E 7r and 

a~ _-> 1. If p 1 n~ then clearly p E ~r. Suppose that n~ = p~ ~ where p, q E 7r and 

W.L.O.G. p > q. Splitting n, into q ~ parts of cardinality p~ each, we get since 

1S, (Sym(p ~))1 = P(""-')/(P-1) a contribution of 

p((,,o-,)/(,-~))q~ > p(p..-,)/(p-,)qCq~ 1)/(q-,), 

thus increasing d(Tr,~, Sym(n)). We have proved that n~ cannot be a product of 

powers of two distinct primes, and using induction, we obtain n~ = p~'. 

It is left to prove that d(Tr, o% Sym(n)) determines the n~'s uniquely. Denote by 

w(p) the sum of all the n~'s which are powers of the prime p, and let 

w(p) = Z~,=z akp ~, 1 =< ak =<p - 1, ak => 1 be the p-adic representation of w(p). 
By the maximality of M each p~k appears exactly ak times as n~ for some i. But 

by [14, p. I1] 

ISp(M)I = I I~Ik=, (S" (Sym(p~Q))~ I = IS"(Sym(w(P)))I 

and since p divides w (p), !S, (M)I and hence d(Tr, ~, Sym(n)) uniquely deter- 

mine w (p). Thus d (T r, ~, Sym(n)) uniquely determines the ak's and the ak 's, and 

consequently also the n~'s. The uniqueness of the n~'s implies that the elements 

of ~r 0% Sym(n)) form a single conjugacy class. 

We will conclude with some examples: 

EXAMPLES. (a) For k ->2 or k = ~ ~1({3}', k, Sym(n)) is a set of 2-subgroups 

of Sym(n). 

(b) For k _-> 1 or k = oo ~/({3, 5}', k, Sym(n)) is a set of 2-subgroups of Sym(n). 
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(c) NI({2}', Sym(ll)) consists of groups generated by the disjoint 3-cycles and 
a disjoint 5-cycle, while M({2}',~, Sym(ll)) is the set of 3-Sylow subgroups of 
Sym(ll). Thus, the fact that NI(G) = M(~, G) for groups of odd order cannot be 
extended to NI({2}', G) = M({2}', ~, G) for arbitrary groups. However, it holds if 
G is solvable. 
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